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Some words on parameterized complexity

Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.
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FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f (k) · nO(1) in graphs with tw ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

Objective:
build a framework to obtain single-exponential algorithms
for a class of NP-hard problems in sparse graphs.
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Surfaces

SURFACE = TOPOLOGICAL SPACE, LOCALLY “FLAT”
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Handles
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Cross-caps
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Surface Classification Theorem

Surface Classification Theorem:

any compact, connected and without boundary surface can be
obtained from the sphere S2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding g ≥ 0 handles to the sphere S2, obtaining the
g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces:

obtained by adding h > 0 cross-caps to the sphere S2, obtaining a
non-orientable surface Ph with Euler genus eg(Ph) = h.
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Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.
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Branch decompositions and branchwidth

A branch decomposition of a graph G = (V ,E) is tuple (T , µ)
where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T ), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T ) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the minimum
width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T )

|mid(e)|
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Dynamic programming (DP)

Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

The size of the tables reflects the dependence on k = |mid(e)| in
the running time of the DP.

The precise definition of the tables of the DP depends on each
particular problem.
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A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.
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Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .
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“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.
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From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.
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Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T )

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21
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Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.
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Main results (II)

The main result is that if DP is applied on surface cut decompositions,
then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).
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Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)
Let Σ be a surface whose boundary has β(Σ) connected components.
Then the number of non-crossing partitions on Σ with k vertices is
asymptotically bounded by

f (Σ) · k−3/2χ(Σ)+β(Σ)−1 · 4k ,

where
f (Σ) is a function depending only on Σ.
χ(Σ) is the Euler characteristic of Σ: χ(Σ) = 2− eg(Σ)− β(Σ).

In the case of the disk (Catalan numbers): 1√
π
· k−3/2 · 4k .
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How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.
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Structure of minor-free graphs

Idea: use the structure of minor-free graphs.

Some (simplified) preliminaries:
h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure theorem [Robertson and Seymour]:
Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:
obtained from graphs of genus at most h by adding at most h
apices and at most h vortices of depth at most h.
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Extension to minor-free graphs

Strategy: use an extension of surface cut decomposition in
each almost-embeddable graph, and then merge them.

The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

We can capture their combinatorial behavior with h-triangulations:

partition in the disk in which no subset of h + 1 blocks pairwise
intersect. (A non-crossing partition is a 1-triangulation.)

It is known that the # of h-triangulations on k elements satisfies

Th(k) ≤k→∞
h!

πh/2 · k
−3h/2 · 4hk
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Further research

Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS
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Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?
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Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?
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DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?
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Randomized single-exponential algorithms

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. arXiv,
March 2, 2011]:

They present randomized algorithms for connected packing-encodable
problems in general graphs with time ctw · nO(1).

They introduce a dynamic programming technique called
Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

In addition, they provide tight lower bounds for many connected
packing-encodable problems.

OPEN QUESTIONS:

Can these algorithms be derandomized?

Can the lower bounds be improved to ctw log tw · nO(1)?
35
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Gràcies!
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